Nitin Sharma received the B.E. degree in Industrial Engineering from Thapar Institute of Engineering and Technology, India, in 2004, and the M.S. degree and the Ph.D. degree in Mechanical Engineering from the Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, in 2008 and 2010, respectively. He was an Alberta Innovates-Health Solutions Post-Doctoral Fellow with the Department of Physiology, University of Alberta, Edmonton, Canada. He is currently an Associate Professor in the Department of Mechanical Engineering and Materials Science at the University of Pittsburgh. His research interests include the modeling, optimization, and control of walking with a hybrid device that uses FES and a wearable powered exoskeleton. He has won O Hugo Schuck Award for the Best Application Paper from the 2008 American Control Conference. His current research in hybrid exoskeletons is funded by three NSF awards and one NIH R03 Award. He won NSF CAREER Award in 2018.

New Control and Sensing Approaches to Integrate Functional Electrical Stimulation in a Wearable Exoskeleton

Nitin Sharma, PhD
Associate Professor and Director
Neuromuscular Control and Robotics Laboratory
Department of Mechanical Engineering
University of Pittsburgh

Functional electrical stimulation (FES) can be used by people with paraplegia to achieve standing and walking functions. FES uses external electrical currents to artificially activate paralyzed muscles. Gait and standing exercises using FES have been shown to improve quality of life. However, FES-induced muscle fatigue rapidly degrades limb forces. This prevents long-term user acceptability of FES and its usage in activities of daily living. To address this limitation, FES can also be incorporated into a wearable exoskeleton, where they can potentially work in tandem to offset the effects of FES-induced fatigue. To incorporate FES into a wearable exoskeleton, sophisticated automatic controllers are needed.

In this talk, I will be presenting new nonlinear control algorithms that use Lyapunov-based nonlinear control design and dynamic optimization to coordinate FES and a wearable exoskeleton. Further, I will present our recent results on using ultrasound (US) imaging to detect FES-induced muscle fatigue in the quadriceps muscle. These recent results are our initial steps towards realizing US imaging as a sensing modality to detect muscle fatigue and improve coordination between FES and the wearable exoskeleton. Lastly, I will propose that US imaging can also be used to sense intent of an exoskeleton user. Recently, we characterized ankle muscle activity with a US imaging-derived signal in order to predict volitional ankle torque. These results hold promise to develop US imaging-based musculoskeletal models that predict intent of a user in the exoskeleton.

ABSTRACT Functional electrical stimulation (FES) can be used by people with paraplegia to achieve standing and walking functions. FES uses external electrical currents to artificially activate paralyzed muscles. Gait and standing exercises using FES have been shown to improve quality of life. However, FES-induced muscle fatigue rapidly degrades limb forces. This prevents long-term user acceptability of FES and its usage in activities of daily living. To address this limitation, FES can also be incorporated into a wearable exoskeleton, where they can potentially work in tandem to offset the effects of FES-induced fatigue. To incorporate FES into a wearable exoskeleton, sophisticated automatic controllers are needed.

In this talk, I will be presenting new nonlinear control algorithms that use Lyapunov-based nonlinear control design and dynamic optimization to coordinate FES and a wearable exoskeleton. Further, I will present our recent results on using ultrasound (US) imaging to detect FES-induced muscle fatigue in the quadriceps muscle. These recent results are our initial steps towards realizing US imaging as a sensing modality to detect muscle fatigue and improve coordination between FES and the wearable exoskeleton. Lastly, I will propose that US imaging can also be used to sense intent of an exoskeleton user. Recently, we characterized ankle muscle activity with a US imaging-derived signal in order to predict volitional ankle torque. These results hold promise to develop US imaging-based musculoskeletal models that predict intent of a user in the exoskeleton.